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Aspects of analysis and simulation of a 

flaperon ditching scenario 
 

Argiris Kamoulakos1 
MH370-CAPTIO Team Member, Paris, France (akamoulakos@yahoo.com) 

In the wake of the disappearance of the MH370 Boeing 777 and the recovery of the right 

wing flaperon debris, a ditching scenario has been envisaged by the investigating authorities. 

In this respect, this paper attempts to assess the forces exerted by fluid-structure interaction 

upon a guided-ditching flaperon both through analytical and numerical means and compare 

the results with the evidence. The author presents a modified version of the Karman wedge 

water impact theory, suitably adapted for a single flat panel ditching case, which leads to a 

simple analytical relation for the total hydrodynamic force as a function of the flaperon 

horizontal and vertical speeds and its angle of impact. Validation of the analytically obtained 

force to that obtained by Smoothed Particle Hydrodynamics (SPH) water simulations is 

presented. An extension of the analytical relation is made for the flaperon section failure 

stresses as a function of velocity vector and angle of impact with the perspective towards areas 

containing fastened parts. A basic Finite Element Model (FEM) of the flaperon is then 

conceived from available geometric and material data and subjected to a typical ditching 

impact. The type and place of failure of the flaperon (notably its trailing edge) appears in 

accordance with the analytically obtained upper bounds and with the state of the recovered 

flaperon. 

I. Nomenclature 

𝛼 = angle of inclination of the under-surfaces with the horizontal (angle of deadrise) 

𝜎𝑎𝑣  = average principal membrane stress of the flaperon skin due to hydrodynamic bending effect 

𝜎𝑚𝑎𝑥  = maximal membrane stress of the flaperon skin around a fastener stress concentration 

𝐶𝛼  = pressure coefficient due to trailing edge end-effects 

𝐶3𝐷  = pressure coefficient due to lateral end-effects 

𝐶𝜎  = stress concentration coefficient around fastener holes 

c = flaperon chord length 

d = moment arm distance of force to spar section where fracture happened 

𝐹𝑣 = vertical component of the resultant pressure force acting on the body 

𝐹𝑛 = resultant pressure force acting normal to the wetted surface 

𝐹𝑚 = flaperon skin membrane force due to hydrodynamic bending effect 

l = length of the body 

m = mass per unit length of the body 

M = total mass of the body 

𝑛𝑝𝑙𝑦 = number of composite fabric plies comprising the skin of the flaperon 

𝑡𝑝𝑙𝑦 = thickness of each plie of the flaperon skin 

𝑉0 = initial vertical (impact) speed of the body 

𝑉 = instantaneous vertical speed of the body 

𝑉𝑥0 = prescribed horizontal ditching speed 

𝑉𝑦0 = prescribed vertical ditching speed 

𝑉𝑛 = equivalent ditching speed normal to the instantaneous water surface 

𝑤 = width of the flaperon spar where fracture happened 

                                                           
1 Scientific Director, ESI Group, 3 bis rue Saarinen, 94528 Rungis, FRANCE. 
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𝑥 = half width of the wedge at the plane of the undisturbed water surface 

𝑥𝑒𝑓𝑓  = effective half width of the wedge for added mass estimation 

𝑦 = depth of immersion normal to the plane of the undisturbed water surface 

II. Introduction 

“On 07 March 2014 at 1642 UTC a Malaysia Airlines (MAS) Flight MH370, a Beijing-bound international 

scheduled passenger flight, departed from Runway 32R, KL International Airport [KLIA] with a total of 239 persons 

on board (227 passengers and 12 crew). The aircraft was a Boeing 777-200ER, registered as 9M-MRO.” (extract from 

the Malaysian accident investigation report). 

A little bit later that day the aircraft vanished from the radars. Ever since, its whereabouts remain a mystery. 

In the years that followed, a very limited amount of debris has been recovered in the Indian ocean coastal lines of 

Africa, Mauritius and Isle de Reunion. From this debris, only three pieces have been formally identified as definitely 

belonging to that aircraft: the right flaperon, the right inner flap and the trailing edge of the left outer flap. 

Despite extensive search, no traces of the aircraft itself have been found and the case is (at least for now) closed 

after the final accident investigation reports from Malaysian authorities in 2018. 

Many scenarios have been proposed regarding what happened to this aircraft. 

The CAPTIO team has put forward a coherent account of the possible trajectory the aircraft would had followed, 

that satisfies as much as possible the available satellite and Air Traffic Control data, and it leads to a potential ditching 

close to the Christmas Islands. The details of this work can be found in the CAPTIO website http://mh370-captio.net/. 

The recovered confirmed debris of this flight holds the key to the aircraft final moments. In particular, the flaperon 

debris which has been extensively examined by the Direction Générale de l’ Armement (DGA) Ministry of Defense 

in France [1] and is pictured in Fig. 1, at the moment it was transferred for investigation. 

 

 

Fig. 1 Flaperon being recovered by the French authorities at Ile de La Réunion. 

 

What is very intriguing is the missing part of the trailing edge (highlighted by CAPTIO in Fig. 1). The conclusion 

of the French report was that a ditching process was the most probable cause. The author who is a member of the 

CAPTIO team embarked to complement the DGA study by attempting to examine (as much as possible with the 

available data) the validity of the ditching assumption from a theoretical and a numerical (simulation) point of view. 

In this process he revisited the Von Karman theory for water impact and adapted it / extended it accordingly. 
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III. Strategy for modelling ditching through numerical simulation 

Ditching involves fluid-structure interaction with large topology changes of the fluid as a consequence of the 

creation of waves during the penetration by the structure. One practical way to simulate ditching is to model the fluid 

with a particles method in order to allow large topological changes and mixing, that is, phenomena that are very 

difficult to be captured by traditional numerical methods, like the Finite Element method (FE) for instance. The 

particles method that was used to model the fluid (water) was the Smoothed Particle Hydrodynamics method (SPH). 

See Fig. 2 below for basic concepts. 

 

 

Fig. 2 Foundation of SPH idealizations as compared to FE 

 

In order to choose the appropriate discretization of the fluid domain for ditching, a systematic investigation of the 

Von Karman wedge benchmark was done. The problem setup is as in Fig. 3 below corresponding to an infinitely long 

horizontal cylindrical body with a wedge-shaped undersurface impacting vertically a semi-infinite fluid domain.  

 

 

Fig. 3 Definition of the Von Karman wedge from [3] 

 

The problem is essentially 2D as the third dimension that goes to infinity is self-similar, hence the problem 

corresponds to the class of “plane strain” problems. 

The simulations were done using the explicit transient dynamic code VPS (PAMCRASH) of ESI Group [9] and 

using the 2D and 3D options for SPH modelling, as required. The material model for the water requires an appropriate 

Equation Of State (EOS). Although traditionally a polynomial EOS is used for water under impact, since in ditching 

(under the velocities we are interested) the water compressibility is very small, it is more efficient to adopt the 

Murnahan-Tait EOS [2,9]. 

Before proceeding with the simulations, the necessary theoretical foundation is presented below and the VPS-

based simulations are used to validate and complement this foundation. 

D
ow

nl
oa

de
d 

by
 A

rg
ir

is
 K

am
ou

la
ko

s 
on

 J
un

e 
19

, 2
02

0 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
0-

32
17

 

https://arc.aiaa.org/action/showImage?doi=10.2514/6.2020-3217&iName=master.img-001.jpg&w=394&h=161
https://arc.aiaa.org/action/showImage?doi=10.2514/6.2020-3217&iName=master.img-002.jpg&w=335&h=132


4 

 

IV. Basic Von Karman theory for water impact of seaplane floats 

Von Karman [3] examined the problem of an infinitely long horizontal perfectly rigid prismatic body with a wedge-

shaped undersurface as it strikes vertically an infinitely long horizontal undisturbed surface of water in order to 

calculate analytically an estimate of the force per unit length acting between the body and the water at “first impact” 

stages. In his pioneering approach, he ignored the subsequent hydrodynamic flow effects, the viscosity or cavitation 

effects, any horizontal relative velocity to the sea and finally the “Archimedes” force (buoyancy), as he was interested 

at the “first impact” scenario. 

In this sense the problem is tackled from a “conservation of momentum” approach between the before impact and 

after impact state of the system, without any gravitational effects and in 2D. 

Let 𝑚 be the mass per unit length of the body (seaplane), 𝛼 the angle of inclination of each of the wedge 

undersurfaces with the horizontal and 𝑦 the vertical distance the body travels in time from the initial point of impact 

with the water (depth of immersion). The time varying motion of the body within the water will provoke a disturbance 

in a mass of water beneath it, which will provide inertial resistance to the penetration. This is the “virtual mass”. Von 

Karman, using the 2D assumption, estimated the virtual mass to be equal to the mass of water contained in a semi-

cylinder of diameter equal to the width of the wedge at the plane of the undisturbed (original) water surface. 

The semi-cylindrical assumption for the virtual mass comes from the fact that a flat plate in 2D, fully immersed in 

a fluid and accelerating through it, experiences theoretically an added inertia from a mass of fluid that is contained 

within a circular cylinder of diameter equal to the width of the plate. The rear part of the plate experiences a suction 

force from the rear semi-cylinder of water while the front part a compression force from the forward semi-cylinder of 

water. In our case we have half the domain filled with air and half with water, hence only the semi-cylinder of water 

represents any added inertial force. 

The conservation of momentum at any time 𝑡 during the penetration then gives: 

 

           𝑚𝑉0 = 𝑚𝑉 +  
1

2
 π 𝑥2𝜌𝑉             (1) 

 

where 𝜌 is the water density and 𝑉0 the initial vertical speed. Setting the following for the instantaneous velocity: 

 

𝑉 =
𝑑𝑦

𝑑𝑡
= tan 𝛼 ∙

𝑑𝑥

𝑑𝑡
              (2) 

 

and using the following identity: 

 
𝑑2𝑥

𝑑𝑡2 =
𝑑

𝑑𝑥
[

1

2
(

𝑑𝑥

𝑑𝑡
)

2

]             (3) 

 

we can substitute Eq. (2) in Eq. (1) and using Eq. (3) we can obtain for a body with an out-of-plane length 𝑙 and 

total mass 𝑀, the instantaneous retardation as below: 

 
𝑑2𝑦

𝑑𝑡2 =
𝑉0

2 cot 𝛼

𝑀(1+
𝜌𝑙𝜋𝑥2

2𝑀
)

3 𝜌𝑙𝜋𝑥             (4) 

 

The associated vertical force 𝐹𝑣 can then be obtained from Newton’s law as: 

 

𝐹𝑣 = 𝑀
𝑑2𝑦

𝑑𝑡2 =
𝑉0

2 cot 𝛼

(1+
𝜌𝑙𝜋𝑥2

2𝑀
)

3 𝜌𝑙𝜋𝑥            (5) 

 

The case we are interested in this paper is for a constant prescribed immersion speed 𝑉0 of the wedged body and 

this can be obtained if we assume that the total mass of the body is infinite. In this case Eq. (5) becomes: 

 

𝐹𝑣 = 𝑉0
2𝜌𝑙𝜋𝑥 cot 𝛼              (6) 
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A. The Wagner correction and its modification by the author 

Wagner [4] examined the same problem by trying to take account of the wave generated by the body during its 

immersion in the water. Since the water displaced by the immersing body rises along its sides, the width of the wetted 

surface and the associated mass of the flow should be greater than those based on the flat width in the plane of the 

undisturbed surface, as Von Karman assumed. 

 

 

Fig. 4 Definition of the Wagner “correction” 

 

Assuming that the water particles at the top of the water upflow move vertically up (see Fig. 4) and in accordance 

to the analytical 2D velocity profile for the water crest at the interface with an inclined flat plate being immersed in a 

horizontal water surface, he determined the “effective” width of the wedge at the tip of the wetted surface. He 

discovered that for a triangular cross section, which is the case for the wedged shape undersurface of Von Karman, 

that it is 1.57 (or 
𝜋

2
 ) times larger of that by Von Karman. 

This is sometimes termed as the “Wagner correction”, although it is not sure that Wagner was aware of Von 

Karman’s work as his approach was independent and different. 

Wagner proceeded to re-estimate the “virtual mass” of the fluid based on this risen wetted surface and this was 

consequently estimated as (
𝜋

2
)

2

 of that by Von Karman. This implied also that the resultant vertical force would be 

scaled by (
𝜋

2
)

2

 as compared to that of Von Karman. 

However, over the years it became evident that while Von Karman’s formula in equations Eq. 4, Eq. 5 and Eq. 6 

underestimated the resultant vertical force during immersion, the Wagner correction produced a force that greatly 

overestimated this force as compared to experimental measurements. 

Researchers like Mayo [5] gave a great account of the differences between the Von Karman and Wagner theory 

and all the efforts done to reconcile them, and all actually came down to a large effect to the definition of the added 

mass. 

The author believes that Von Karman’s estimation for the added mass appears to have a good theoretical 

foundation as a first guess, since at that time the means at his disposal were very limited. However, Wagner’s extension 

of basing the added mass on a cylinder whose radius is the “effective” width of the wedge at the tip of the wetted 

surface, appears not justifiable, as the fluid near the tip of the wetted surface is already part of the “spray” and is 

already moving tangentially, thus has already delivered its momentum to the wedge. Hence a cylinder thus defined 

will include much more fluid mass than the one that should be moving downwards with the plate. 

Payne [8] is one to seriously challenge the choice of added mass size by Wagner, in favour of that of Von Karman 

and in the process he quotes amongst other researchers the experimental results of Bisplinghoff at MIT in the 60s. 

These results showed that the actual “effective” width of the wedge (excluding spray which is physically present) 

should be on average between 1.2 and 1.35 times larger than that of Von Karman. 

In this paper we have no experimental results but we use high fidelity simulations (VPS code) for our work which 

include the spray and we have found that the best factor for correcting the Von Karman effective wedge width was 

about 1.25, and the corresponding hydrodynamic force comparisons for all cases of interest in this article were very 
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encouraging, as it will be shown in the rest of the paper. Since 1.25 is practically √
𝜋

2
 and for the sake of similarity 

with the existing equations we can define the effective wedge width for added mass definition as: 

 

           𝑥𝑒𝑓𝑓 = √
𝜋

2
 𝑥𝑉𝑜𝑛𝐾𝑎𝑟𝑚𝑎𝑛             (7) 

 

The consequence of the above is that the added mass now will be scaled by 
𝜋

2
 as compared to that of Von Karman 

and similarly the corresponding hydrodynamic force. Substituting Eq. (7) to Eq. (1) for 𝑥 and repeating the derivation 

of the hydrodynamic force we get: 

 

𝑭𝒗 =
𝝅

𝟐

𝟐
𝑽𝟎

𝟐

𝝆𝒍𝒙 𝐜𝐨𝐭 𝜶            (8) 

 

The above new form of the Von Karman equation is the cornerstone of this paper. 

It is very challenging to visualize the added mass in ditching but one “imaginative” way through simulation can 

be to depict the part of the fluid that moves downwards with the body at any given instant. 

A wedged object was modelled as a rigid body using the VPS code (PAMCRASH) and it impacted a stationary 

mass of water (modelled with SPH 2D technology as explained earlier). 

The geometry of the wedge was such it makes an angle of 30 degrees with the undisturbed surface of the water 

and the prescribed immersion speed was 10 m/s. 

Figure 5 below attempts to show the added masses based on the Von Karman (yellow), Wagner (blue) and the 

author (red). 

 

 

Fig. 5 Added masses according to Von Karman (yellow), Wagner (blue) and the author (red) 

 

The initial undisturbed fluid is shown in order to allow the definition of the Von Karman added mass that uses the 

undisturbed surface as reference. 

It can be seen that the Von Karman added mass (based on 𝑥) does not include some of the fluid that moves 

significantly downwards and certainly not any part from the water elevation at the crest, by definition, while the 

Wagner added mass (based on 
𝜋

2
𝑥) contains a lot of fluid that is not moving downwrads or is moving within the 

“spray” at the crest that is not part of the added mass, as shown by Bisplinghoff. 

The definition from the author (in red, based on √
𝜋

2
𝑥) extends the Von Karman added mass to include parts of the 

fluid still participating in the downward motion plus includes the effective width of Bisplinghoff (the part of the crest 
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that has contour colours showing vertical motion), hence it is a reasonable compromise and hints visually to why the 

results of this paper shown later on are encouraging. 

V. Adaptation of the Von Karman theory to a flat plate at vertical impact 

Noting that an inclined flat plate under vertical impact resembles half the Von Karman wedge, one can assume 

that the associated vertical force evolution during vertical immersion will basically be half the force predicted by the 

Von Karman wedge but adjusted by a coefficient that represents the force reduction due to the end-effects. This is to 

compensate for the change of flow around the lowest end of the plate which is no longer the apex of a wedge but an 

open end. 

Hence dividing Eq. (8) by 2 we get: 

 

𝑭𝒗 = 𝑪𝜶 (
𝝅

𝟐
)

𝟐

𝑽𝟎

𝟐

𝝆𝒍𝒙 𝐜𝐨𝐭 𝜶            (9) 

 

where 𝐶𝛼is a coefficient that is inclination dependent and modifies the force according to its end-effects and to any 

minor adjustments regarding to the choice of Eq. (7) for the effective wedge width. 

This can be investigated through simulation using the same wedged object defined before, that is, having an angle 

of 30 degrees with the undisturbed surface of the water and a prescribed vertical immersion speed of 10 m/s. 

Then the same model was modified to only half of the wedge, ie a flat plate at 30 degrees inclination. 

Figures 6 and 7 show a typical snapshot of the instantaneous velocity vectors of the water flow, the difference in 

the flow pattern due to the end-effects at the lowest end of the plate is obvious. 

 

 

Fig. 6 Velocity vector contours for the Von Karman wedge vertical impact 

 

 

Fig. 7 Velocity vector contours for the flat plate (half Von Karman Wedge) vertical impact 
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The evolution of the resultant vertical force with respect to the immersion vertical displacement was extracted 

from the simulations for both the Von Karman wedge and the corresponding flat plate. It was also calculated according 

to Eq. (8) and Eq. (9) while the coefficient 𝐶𝛼 was adjusted in Eq. (9) in order to fit as close as possible the simulation 

results. The comparison is as below: 

 

 

Fig. 8 Force versus immersion depth comparison between simulation and theory – 30 degrees 

 

It can be seen that the comparison between the simulation and the theory is quite encouraging. The theoretical 

curve that corresponds to the plate 30 degrees case was obtained with 𝐶𝛼 equal to 
13

20
 

The same exercise was repeated with wedges of angle 15 and 45 degrees respectively and the corresponding results 

are as below: 

 

 

Fig. 9 Force versus immersion depth comparison between simulation and theory – 15 degrees 

 

The theoretical curve that corresponds to the plate 15 degrees case was obtained with 𝐶𝛼 equal to 
16

20
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Fig. 10 Force versus immersion depth comparison between simulation and theory – 45 degrees 

 

The theoretical curve that corresponds to the plate 45 degrees case was obtained with 𝐶𝛼 equal to 
11.5

20
 

The above three values of the 𝐶𝛼 , as given in Table 1, were used to define an interpolation function for intermediate 

values of inclination 𝛼 as below: 

 

𝐶𝛼 ~ 1.3561 − 0.206 ln 𝛼𝑖𝑛 𝑑𝑒𝑔𝑟𝑒𝑒𝑠          (10) 

 

or 

Table 1 Evolution of 𝐶𝛼 versus 𝛼 

 

𝛼 (degrees) 𝐶𝛼 

15 16

20
 

30 13

20
 

45 11.5

20
 

VI. Adaptation of the Von Karman theory to a flat plate at inclined impact 

For a vertical immersion of a wedge, it is obvious that the only velocity that matters is the vertical one and the 

pressure applied to the wedge surfaces during immersion has a zero resultant in the horizontal direction due to 

symmetry, while only the vertical force component on the two surfaces matters and it is additive. 

However, this is not the case for a half wedge, ie, a flat plate, the resultant pressure from the flow field evolution 

will have a horizontal and vertical resultant force. Equation (9) will provide only the vertical force based on Von 

Karman’s theory, since it was obtained from vertical momentum conservation only. 

Considering what kinematics disturb the water and provide the flow around the plate one can see that it is not the 

vertical velocity that really matters but the effective velocity normal to the plate which will disturb the flow and 

provoke the associated hydrodynamic forces. Under the assumptions of this paper, any inclined plate with a velocity 

vector aligned along the plate surface will enter the water like an arrow and “not disturb” the water (the thickness of 

the plate is not a geometric parameter, only its surface, and under these conditions it is invisible to the fluid). 

We can rewrite Eq. (9) with respect to the vertical distance variable 𝑦 as below: 

 

𝐹𝑣 = 𝐶𝛼 (
𝜋

2
)

2

𝑉0

2

𝜌𝑙𝑦(cot 𝛼)2            (11) 
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Defining the velocity component normal to the plate as: 

 

𝑉𝑛 = 𝑉0 cos 𝛼               (12) 

 

and realizing that this velocity is the sum of the projections of the horizontal 𝑉𝑥0 and vertical velocities 𝑉𝑦0 of the plate 

as below: 

 

𝑉𝑛 = 𝑉𝑥0 sin 𝑎 + 𝑉𝑦0 cos 𝛼             (13) 

 

we can rewrite Eq. (11) in the following form: 

 

𝑭𝒗 = 𝑪𝜶 (
𝝅

𝟐
)

𝟐

(𝑽𝒙𝟎 + 𝑽𝒚𝒐 𝐜𝐨𝐭 𝜶)
𝟐

𝝆𝒍𝒚           (14) 

 

Equation (14) gives us an estimate of the vertical force evolution on an inclined flat plate under steady inclined 

immersion due to steady horizontal and vertical speeds of 𝑉𝑥0 and 𝑉𝑦𝑜 respectively. 

The simulation model of the flat plate inclined at 30 degrees was used to validate Eq. (14) for inclined impact. 

For a constant horizontal velocity 𝑉𝑥0 of 55 m/s and a constant vertical speed 𝑉𝑦0 of 20 m/s the vertical force 

evolution from the simulation results is presented against the above theory, using equation (10) for the variation of 

𝐶𝛼. 

 

 

Fig. 11 Force versus immersion depth for 55 m/s horizontal – 20 m/s vertical speeds 

 

We can see from Fig. 11 that the comparison is quite favorable. This validates the assumption that the effective 

normal speed with respect to the water mass is a major physical variable in ditching or planing, which is of course no 

surprise as the stagnation streamline is normal to the plate surface. 

A typical guided ditching scenario with a constant 68.42 m/sec (153 miles/hour) horizontal speed and 2.54 m/sec 

(500 ft/min) vertical speed and with the SPH discretization in 2D plain strain chosen in the previous section is shown 

during a typical instant in the simulation as in Fig. 12. 
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Fig. 12 Velocity contours of 2D SPH ditching simulation of plate at 30 degrees 

 

A wide range of speed combinations were simulated as shown below, and the different vertical force evolution 

curves we obtained. Important observations can be made once we indicate the equivalent normal speed 𝑉𝑛 that 

corresponds to these combinations and the equivalent vertical immersion speed for a Von Karman scenario on a flat 

plate 𝑉0 as calculated from Eq. (12), shown in Table 2. 

 

 

Table 2 Equivalence between inclined ditching and vertical immersion 

 

𝑉𝑥0 
(m/s) 

𝑉𝑦0 

(m/s) 

𝑉𝑛 
(m/s) 

𝑉0 
(m/s) 

55 10 36.16 41.76 

55 20 44.82 51.75 

50 30 50.98 58.87 

68.42 2.54 36.41 42.04 

68.42 5.08 38.61 44.58 

70 20 52.32 60.41 

 

The flat plate was simulated for an inclined immersion with a combination of horizontal and vertical speeds of 

55m/s - 10m/s and then by the “equivalent” vertical immersion with a Von Karman speed of 41.76 m/s and the results 

are shown in Fig. 13. 

 

 

Fig. 13 Resultant vertical force versus depth of immersion evolution / Equivalence between inclined and 

vertical ditching 
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It can been that the resultant vertical force evolution in the two cases is practically identical validating the fact that 

there is an equivalence between vertical slamming and inclined ditching, that is, for every combination of horizontal 

and vertical speeds in inclined water impact there is an equivalent vertical impact speed that produces the same force 

evolution. 

This validates also the theoretical approach for adapting the Von Karman theory to the inclined impact cases. 

Furthermore it can be seen, for instance, that the combinations of 50 m/s – 30 m/s and 70 m/s – 20 m/s results in 

similar 𝑉𝑛 and hence expected similar hydrodynamic force evolution and similar damage on the flaperon for the same 

𝛼 is expected. 

More importantly the same can be said for the combinations 68.42 m/s – 2.54 m/s (controlled ditching approach, 

shown in Fig. 12) and 55 m/s – 10 m/s (uncontrolled ditching approach). 

That is, the horizontal – vertical speed combination, is not an obvious differentiator for deciding if the flaperon 

would be damaged or not, but instead it is its corresponding normal speed relative to the water surface at a particular 

sea state. 

VII. Flaperon skin stresses during ditching 

Switching the terminology from flat plate to flaperon (as we assume that the lower surface of the flaperon 

resembles a flat plate), we want to estimate an upper bound of the skin stresses during ditching for any spanwise 

section along its chord. 

Assuming a flaperon of chord 𝑐 and inclined by angle 𝛼, we seek to evaluate the stresses 𝜎 of the upper and lower 

skin in bending at a spar section passing through the point 𝑆 located at a distance 𝑐𝑠 from the leading edge. 

What is of interest is the magnitude of the total hydrodynamic force. Since viscous effects are neglected (no 

boundary layer) there is no tangential force possibly exerted by the fluid upon the plate but only a normal force and 

the vertical force of Eq. (14) is simply the vertical projection of that normal force. 

Hence the resultant hydrodynamic force normal to the plate 𝐹𝑛 shall be as below: 

 

𝐹𝑛 =
𝐹𝑣

cos 𝛼
               (15) 

 

We assume that the resultant force 𝐹𝑛 from Eq. (15) due to the ditching under constant horizontal and vertical 

speeds 𝑉𝑥0 and 𝑉𝑦𝑜 respectively is applied at a distance 𝑑 from point 𝑆 towards the trailing edge as in Fig. 14. 

 

 

Fig. 14 Flaperon sectional definitions 

 

Using moment equilibrium, the major part of the bending moment at point 𝑆 due to the force 𝐹𝑛 shall be equal to 

the sectional bending couple from the upper / lower skin compressive / tensile forces 𝐹𝑚 through that section. Hence: 

 

𝐵𝑒𝑛𝑑𝑖𝑛𝑔 𝑀𝑜𝑚𝑒𝑛𝑡 = 𝐹𝑛𝑑 = 𝐹𝑚𝑤          (16) 

 

where 𝑤 is the sectional width (width of the spar at that section). 

Taking into account the fact that the flaperon skin is made out of a number of composite plies we can define the 

average uniform principal skin stress 𝜎𝑎𝑣 as related to the skin forces like below: 

 

            𝐹𝑚 =  𝜎𝑎𝑣𝑙𝑛𝑝𝑙𝑦𝑡𝑝𝑙𝑦             (17) 
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where the skin is made overall from a total number of 𝑛𝑝𝑙𝑦 plies each having a thickness 𝑡𝑝𝑙𝑦 

Combining Eq. (17), Eq. (16) and Eq. (15) we can obtain the average uniform principal skin stress, whether tensile 

or compressive due to the bending moment induced by the hydrodynamic force 𝐹𝑛. 

We will have to introduce a coefficient, 𝐶3𝐷, in the force calculation for the fact that the true flaperon is a finite 

body with strong end-effects regarding the hydrodynamic flow during ditching around its spanwise ends (pressure 

relief like the wing tip end-effect). This coefficient will be investigated in the next section. 

In order to attempt to estimate the level of stresses that can produce skin failure, we need to take one more factor 

into account, the fact that the flaperon skin failed along a line of fasteners, hence the local stress concertation factor 

𝐶𝜎 has to be somehow incorporated. This type of factor is always multiplicative as it locally scales up the stresses. In 

plane stress isotropic medium problems, for a circular hole under bi-axial far-field loading it is 2 while for a uniaxial 

far-field loading it is 3. 

Finally, taking all the above into account we can have the following form for the maximal local average skin stress 

𝜎𝑚𝑎𝑥  in bending: 

 

𝝈𝒎𝒂𝒙 = 𝑪𝜶𝑪𝟑𝑫𝑪𝝈 (
𝝅

𝟐
)

𝟐

[
(𝑽𝒙𝟎+𝑽𝒚𝒐 𝐜𝐨𝐭 𝜶)

𝟐
𝝆𝒚𝒅

𝒏𝒑𝒍𝒚𝒕𝒑𝒍𝒚𝒘 𝐜𝐨𝐬 𝜶
]          (18) 

 

where: 

 

2 < 𝐶𝜎 < 3              (19) 

 

As the fastener holes we refer to are those of screws, their pre-tensioning is an extra variable, but very difficult to 

quantify in real life in how it affects the 𝐶𝜎. This was left out of this investigation as it can always be incorporated by 

modifying the 𝐶𝜎 coefficient. Similarly for any modification to 𝐶𝜎 due to the proximity effect between the fasteners, 

as here they are treated in isolation from each other. 

VIII. Simulation of the guided ditching of a flaperon as a rigid body 3D 

The flaperon was modelled in 3D as a rigid body and was analyzed in a 3D ditching scenario as shown in Fig. 15 

and for the same configuration in a 2D simulation. 

 

 

Fig. 15 SPH ditching simulation of 3D rigid flaperon 
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The resultant vertical force evolution was compared between the 2D and 3D simulations in order to obtain an 

estimate of the 𝐶3𝐷 coefficient. The comparison is shown in Fig. 16. 

 

 

 Fig. 16 SPH ditching simulation of rigid flaperon / comparison of force versus immersion depth evolution 

between 2D and 3D models 

 

For the particular dimensions of the flaperon and 30 degrees inclination, the 𝐶3𝐷 coefficient was found to be almost 

0.75, ie.: 

 

𝐶3𝐷 ~ 
3

4
              (20) 

 

and as this coefficient should depend on the Aspect Ratio AR, the flaperon has an AR almost 1, while longer 

structures like flaps should have 𝐶3𝐷 between 0.75 and 1, hence they should tend to see higher hydrodynamic loads 

for the same impact configuration. In the case where the flaperon should be un-extended, it will benefit from the 

“confinement” of the adjacent wing components (ie. flaps) and this coefficient should be practically 1. This will be 

the case also if the flaperon is extended say at 30 degrees while the flaps are also extended in “landing” position, they 

will provide confinement and a 𝐶3𝐷 close to 1. 

IX. Simulation of the guided ditching of an elastic flaperon in 3D 

In order to assess the potential for fracture of the flaperon around the section where the debris showed the failure 

happened, we need to consider simulating an elastic flaperon model that includes damage and failure. 

Reference [1] was used to extract the geometric and material attributes of the flaperon. It is clearly noted that the 

outer skin (upper and lower) is composed from two fabric laminates separated by a honeycomb core. Each fabric 

laminate is composed by three fabric plies with a +/-45 , 0/90 and +/-45 degrees stackup sequence as shown in Fig. 

17. 
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Fig. 17 Material constituents of the flaperon 

 

The way to model such a structure was to use 3D composite material shell Finite Elements. The advanced option 

in the VPS code of a multi-material / multi-layered shell was used, which allows us to mix different plies with different 

material properties and at different orientations in the stack-up. 

The details of the model creation were given in [2]. It has to be highlighted that CAPTIO did not have access to 

the official flaperon geometric and material description as it is property of The Boeing Company; the models were 

based on the limited data available in the associated DGA report of [1]. However, the ensemble of these data were 

reasonably representative of the essential attributes of the flaperon in order to have a convincing order of magnitude 

analysis of the problem in question via simulation. 

The flaperon was analyzed under a guided ditching scenario with a constant 68.42 m/s horizontal speed and a 

constant 10.16 m/s vertical speed using the elastic with damage material representation of above. The result is shown 

in Fig. 18 and the failure of the trailing edge just after the trailing edge spar is evident. 
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Fig. 18 Ditching simulation of the 3D elastic flaperon 

 

This result was clearly repeatable with slight variations in material properties and also when in the extreme case 

an equivalent aluminum sheet (“black-aluminum”) was used; a plastic hinge was always apparent behind the trailing 

edge spar of the flaperon. 

X. Discussion of results 

The comparison between the guided ditching simulation and actual recovered debris is shown in Fig. 19 below. It 

is obvious that it is very encouraging. 

 

 

Fig. 19 Comparison of guided ditching simulations with elastic flaperon and recovered debris 
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The resultant vertical force variation with depth of immersion exerted upon the flaperon in the simulation was 

compared to the one predicted theoretically using Eq. (14) and the comparison is as below. 

 

 

Fig. 20 Comparison of force versus immersion depth results for guided ditching simulations with elastic 

flaperon and theory 

 

The comparison in Fig. 20 is evidently very good until the depth of 8cm when the damage starts to appear on the 

simulation model of the flaperon. The crack then propagates along the bottom skin at the intersection with the vertical 

spar (where the failure was observed on the debris). This translates to an erratic dynamic signal after 10 cm depth as 

shown above, that brings the force dynamically to zero. 

In order to assess the validity of the maximum stress prediction as given by Eq. (17) around the fasteners joining 

the skin with the spar, the value of the maximal local average skin stress was plotted versus depth, for stress 

concentration factor 𝐶𝜎 of 2 and 3 for locally biaxial and uniaxial loadings accordingly. The corresponding curves are 

shown in Fig. 21. 

 

 

Fig. 21 Flaperon maximal local skin stress range around fastener 
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From Fig. 21 we can see that at depths between 8cm and 10cm and under a constant 68.42 m/s horizontal speed 

and a constant 10.16 m/s vertical speed, the order of magnitude of the maximal stress could be between 400 MPa and 

600 MPa, which is a substantial magnitude and within fracture initiation/propagation limits for many materials. 

Therefore Eq. (18) appears to be reasonably accurate in predicting when the local stress levels will be worrisome 

as far as fracture is concerned, for a guided ditching situation of a flaperon-like body. 

Equation (18) can then be rearranged in a way to provide a relationship between horizontal and vertical speeds 

that can produce a certain level of maximal stress 𝝈𝒎𝒂𝒙 for rupture initiation (which is a material dependent constant) 

for a given angle 𝛼 of inclination to the water free surface (which is a function of the sea state). A family of potential 

aircraft ditching attitude approaches can be created to be linked with other considerations like overall structural 

damage in order to assess the most probable “crash” scenario. This is one of the current research directions of the 

CAPTIO team. 

XI. Conclusion 

Motivated by the recovery of the MH370 Boeing 777 right wing flaperon debris and the associated suspicion that 

its damage was due to a ditching scenario, the author assessed the forces exerted by fluid-structure interaction upon a 

flaperon-like body under guided-ditching, both analytically and numerically, and compared with the evidence. 

In this respect the author modified the Von Karman water impact theory by suitably redefining the added mass 

estimation and adapting it to a single flat panel (flaperon-like body) ditching case. He then obtained a simple analytical 

relation for the total hydrodynamic force as a function of horizontal and vertical speeds and angle of impact. Validation 

of the analytically obtained force to that obtained by Smoothed Particle Hydrodynamics (SPH) water simulations was 

very favorable. 

The theory was further extended regarding the maximal local skin stresses of a flaperon-like body as a function of 

the velocity vector and angle of impact (with the perspective towards areas containing fastened parts) and a simple 

analytical relation was obtained. The validity of the associated formula was tested against Finite Element Model 

ditching simulations of the flaperon and the type and place of failure of the flaperon (notably its trailing edge) appears 

in accordance to the upper bounds thus obtained analytically above and towards the recovered debris. 

Therefore, this simple maximum stress formula is shown to be a useful “order of magnitude” estimator of the 

potential for rupture of the flaperon. 

The analytical work in this paper also suggests that there is an equivalence between inclined ditching and vertical 

immersion of a flaperon-like body with the relative speed normal to the water surface as the link. In this respect, a 

family of combinations of inclined ditching approaches can be created that correspond to the same overall damage 

potential for the flaperon and further considerations have to be taken into account in order to find the most probable 

one. 
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